Critical dimensions and higher order Sobolev inequalities with remainder terms ∗

نویسندگان

  • Filippo Gazzola
  • Hans-Christoph Grunau
چکیده

Pucci and Serrin [21] conjecture that certain space dimensions behave “critically” in a semilinear polyharmonic eigenvalue problem. Up to now only a considerably weakened version of this conjecture could be shown. We prove that exactly in these dimensions an embedding inequality for higher order Sobolev spaces on bounded domains with an optimal embedding constant may be improved by adding a “linear” remainder term, thereby giving further evidence to the conjecture of Pucci and Serrin from a functional analytic point of view. Thanks to Brezis-Lieb [5] this result is already known for the space H 0 in dimension n = 3; we extend it to the spaces H K 0 (K > 1) in the “presumably” critical dimensions. Crucial tools are positivity results and a decomposition method with respect to dual cones. 1 Sharp higher order Sobolev inequalities and critical dimensions In a celebrated paper, Pucci-Serrin [21] studied the following critical growth problem for polyharmonic operators  (−∆) u = λu+ |u|K∗−2u in Ω Du = 0 on ∂Ω k = 0, ...,K − 1 (1) ∗This work was supported by the Vigoni-programme of CRUI and DAAD

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardy inequalities with optimal constants and remainder terms ∗

We show that the classical Hardy inequalities with optimal constants in the Sobolev spaces W 1,p 0 and in higher-order Sobolev spaces on a bounded domain Ω ⊂ R can be refined by adding remainder terms which involve L norms. In the higher-order case further L norms with lower-order singular weights arise. The case 1 < p < 2 being more involved requires a different technique and is developed only...

متن کامل

Sharp Singular Adams Inequalities in High Order Sobolev Spaces

In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...

متن کامل

Positive Solutions to a Linearly Perturbed Critical Growth Biharmonic Problem

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.

متن کامل

Sharp Morrey-sobolev Inequalities and the Distance from Extremals

Quantitative versions of sharp estimates for the supremum of Sobolev functions in W 1,p(Rn), p > n, with remainder terms depending on the distance from the families of extremals, are established.

متن کامل

A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem

Based on properties of vector fields, we prove Hardy inequalities with remainder terms in the Heisenberg group and a compact embedding in weighted Sobolev spaces. The best constants in Hardy inequalities are determined. Then we discuss the existence of solutions for the nonlinear eigenvalue problems in the Heisenberg group with weights for the psub-Laplacian. The asymptotic behaviour, simplicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001